Adaptive Optics

Ideal imaging conditions, even in turbid samples like tissue, are every microscopist’s dream. However, in practice, specimens are often inhomogeneous and, what’s more, embedding and immersion media are rarely perfectly index-matched. Refractive-index mismatches compromise the focusing capabilities of your microscope and can give rise to low-resolution and poor-quality images. abberior solves this problem using adaptive optics. Our Adaptive Optics unit, based on a deformable mirror, can maintain the imaging quality of your microscope, regardless of the specimen. Correction happens on-the-fly and leaves nothing to desire for your results. 

automatic aberration correction

Background-free MATRIX STED image of actin in microvilli of Caco2 cells

MATRIX Detector

Many eyes see more than one. The MATRIX detector drastically improves signal-to-background ratio, resolution, and dynamic range.

Details >

TIMEBOW Imaging

TIMEBOW lifetime imaging for stunning results at confocal and STED super-resolution.

Details >

Thanks to adaptive illumination fluorophore bleaching is substantially reduced

Adaptive Illumination

Brings down the light dose on your sample and lables dramatically. Key ingredient for volume and live-cell superresolution.

Details >

Surface rendering of a z-stack of Nephrin in the kidney

Adaptive Optics

Puts every beam in perfect shape

Details >

Axial STED image of actin in mouse inner ear hair cells

EASY3D

3D-STED and aberration control, the easy way

Details >

Three-color STED image of microtubules, myosin and actin in the growth cone of a neuron's axon

RAINBOW Detection

Continuously variable spectral detection.

Details >

STED Lasers

All-pulsed STED lasers for maximum resolution and minimal bleaching.

Details >

Autoalignment

Every beam in order, including pinhole and STED-shape

Details >

Autofocus

Continuous focus-lock, even with STED

Details >

Excitation Lasers

Pulsed excitation lasers for virtually every wavelength.

Details >

Accessories

Things to make your life easier

Details >

Custom upright 3D STED microscope by abberior

Custom Solutions

We offer solutions for even the most challenging applications. Everything that can be done, we will do.

Details >

FAQ Video 25

“What is required for tissue imaging?”

Watch >

Adaptive Optics

fitting the beam to your sample.

What if deep tissue images were continuously sharp, from the coverslip down to hundreds of microns into the sample?

Our Adaptive Optics system based on a deformable mirror does exactly that: by correcting the refractive index mismatch between immersion and embedding media, plus sample-induced aberrations, your images are crisp and bright everywhere. Even for very large focusing depths, with any objective lens, and any embedding medium.

Inverted front half of L3-stage Drosophila melanogaster larva. Staining of Actin (Phalloidin-ATTO 647N). As the image is recorded, the aberration-compensating deformable mirror automatically follows the focusing depth. Once set up, acquisition runs completely automatic for bright, high-resolution imaging at any depth.

Samples by Sebastian Schnorrenberg, EMBL, Heidelberg.

Without Adaptive Optics the focus is aberrated
Adaptive Optics with its deformable mirror keeps the focus at any time

From confocal microscopy over multiphoton imaging to 2D- and 3D-STED, all techniques suffer from aberrations that inevitably occur when focusing into a sample whose refractive index is different from the immersion medium, or when focusing into a sample with internal inhomogeneities. Using a deformable mirror that shapes the beam so as to pre-compensate for aberrations, all rays are put back in the right place for a crisp focus.

With a deformable mirror the aberration fluorescence is corrected
Thanks to the deformable mirror the exitation STED forms a perfectly focal spot

Spherical aberrations arising from index mismatch between sample and immersion are corrected for, as well as higher-order, sample-induced aberrations. Without Adaptive Optics, excitation laser power is typically increased with focus depth in order to compensate loss of signal due to aberrations. Adaptive Optics preserves resolution and brightness deep inside thick samples and enables imaging at low light levels.

With Adaptive Optics, we enhance the performance of our microscopes by manipulating the wavefronts of the STED, excitation and detection beams using a deformable mirror.

Undistorted wavefronts entering the sample from the objective lens are normally spherical, but variations of the refractive index in the sample can distort them, leading to an imperfect focus. The prime reason, which is almost always present to some extent, is a refractive index mismatch between sample embedding and the immersion medium, although local variations in the sample can lead to aberrations, too.

Using a deformable mirror allows us to effectively cancel aberrations. Deformable mirrors are adaptive elements with a reflective surface whose shape can be controlled. By applying the correct mirror shape, which is a negative of the distortions introduced by the sample, the focus is brought back to perfect shape, increasing signal and resolution even deep inside tissue.

Imaging a fluorescent bead layer at different depths (63x WI objective lens, TDE embedding). The deformable mirror automatically follows when focusing depth is changed. Brightness and resolution are largely preserved up to the working distance of the objective lens.

  • Up to five times higher signal in thick sample sections
  • Superior resolution with STED
  • Often the enabler for 3D-STED imaging
  • Automatic tracking of spherical aberrations
  • Correction of higher order aberrations (astigmatism, coma, trefoil, …)

Super-sharp images, even in thick samples

Axial STED image of actin in mouse inner ear hair cells

EASY3D

3D-STED and aberration control, the easy way

Details >

Dr. Andreas Schönle. Caption: Physicist, Co-Founder and passionate Photon Hunter

Why do we usually recommend APDs in our microscopes and why aren’t we worried about the supposedly lower dynamic range?

Having too many photons is never a problem. Therefore, detectors with the highest quantum efficiency are always the best choice, such as in a MATRIX array.

Details >