abberior instruments
2019
Science immunology
T cell receptor–triggered nuclear actin network formation drives CD4+ T cell effector functions
Authors:
Tsopoulidis, N., Kaw, S., Laketa, V., Kutscheidt, S., Baarlink, C., Stolp, B., ... & Fackler, O. T.
Abstract:
T cell antigen receptor (TCR) signaling triggers selective cytokine expression to drive T cell proliferation and differentiation required for immune defense and surveillance. The nuclear signaling events responsible for specificity in cytokine gene expression upon T cell activation are largely unknown. Here, we uncover formation of a dynamic actin filament network in the nucleus that regulates cytokine expression for effector functions of CD4+ T lymphocytes. TCR engagement triggers the rapid and transient formation of a nuclear actin filament network via nuclear Arp2/3 complex, induced by elevated nuclear Ca2+ levels and regulated via N-Wasp and NIK. Specific interference with TCR-induced formation of nuclear actin filaments impairs production of effector cytokines and prevents generation of antigen-specific antibodies but does not interfere with immune synapse formation and cell proliferation. Ca2+-regulated actin polymerization in the nucleus allows CD4+ T cells the rapid conversion of TCR signals into effector functions required for T cell help.