Products

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • INFINITY
  • FACILITY
  • STEDYCON

Superresolution & Confocal Modules

  • Overview
  • MATRIX Detector
  • TIMEBOW Imaging
  • Adaptive Illumination
  • Adaptive Optics
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Function
  • Microscopy Supplies

Applications

  • Overview
  • Live Cell Imaging
  • Cell Biology
  • Neurobiology
  • Virology
  • Microbiology
  • Zoology
  • Plant Sciences
  • Biophysics
  • Physiology
  • Membrane Biology
  • Material Science
  • All-purpose
  • Tailor-Made

Company

  • People
  • Founders
  • Mission
  • Career
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
  • Support
  • Contact
  • Shop
  • Search
  • EN
    中文
    Language
@abberior.rocks
MENU Contact
ready to useReady to use MINFLUX 3D
Science beyond Barriers

abberior dyes & labels

2017
Scientific reports

Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection

Authors:

Winter, F. R., Loidolt, M., Westphal, V., Butkevich, A. N., Gregor, C., Sahl, S. J., & Hell, S. W.

Abstract:

The extension of fluorescence nanoscopy to larger numbers of molecular species concurrently visualized by distinct markers is of great importance for advanced biological applications. To date, up to four markers had been distinguished in STED experiments featuring comparatively elaborate imaging schemes and optical setups, and exploiting various properties of the fluorophores. Here we present a simple yet versatile STED design for multicolour imaging below the diffraction limit. A hyperspectral detection arrangement (hyperSTED) collects the fluorescence in four spectral channels, allowing the separation of four markers with only one excitation wavelength and a single STED beam. Unmixing of the different marker signals based on the simultaneous readout of all channels is performed with a non-negative matrix factorization algorithm. We illustrate the approach showing four-colour nanoscopy of fixed and living cellular samples.

< Back to publications
Full article >
linkedin facebook twitter Instagram

World+49 551 9995 4010USA+1 301 661 0078

© 2023 abberior

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • INFINITY
  • FACILITY
  • STEDYCON

Superresolution & Confocal Modules

  • Overview
  • MATRIX Detector
  • TIMEBOW Imaging
  • Adaptive Illumination
  • Adaptive Optics
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Function
  • Microscopy Supplies

Applications

  • Overview
  • Live Cell Imaging
  • Cell Biology
  • Neurobiology
  • Virology
  • Microbiology
  • Zoology
  • Plant Sciences
  • Biophysics
  • Physiology
  • Membrane Biology
  • Material Science
  • All-purpose
  • Tailor-Made

Company

  • People
  • Founders
  • Mission
  • Career
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
abberior instruments GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
abberior GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
Abberior Instruments America LLC:
  • Privacy Policy
  • Terms of use USA
  • contact
  • manuals
  • service
  • shop

Cookie settings

Please select whether this page may use cookies. Technically necessary cookies are always set. You can also find further information in our data protection statement.

These cookies are required to enable the basic functions of this website, we set a cookie accordingly. This saves your individual consent to the use of technically necessary cookies. Our website only uses technically necessary cookies.


Privacy PolicyImprint