Products

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • INFINITY
  • FACILITY
  • STEDYCON

Superresolution & Confocal Modules

  • Overview
  • MATRIX Detector
  • TIMEBOW Imaging
  • FLEXPOSURE Illumination
  • RAYSHAPE Mirror
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Function
  • Dyes by Label
  • Microscopy Supplies

Applications

  • Overview
  • Live Cell Imaging
  • Cell Biology
  • Neurobiology
  • Virology
  • Microbiology
  • Zoology
  • Plant Sciences
  • Biophysics
  • Physiology
  • Membrane Biology
  • Material Science
  • All-purpose
  • Tailor-Made

Company

  • People
  • Founders
  • Mission
  • Career
  • Vacancies
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
  • Support
  • Contact
  • Shop
  • Search
  • EN
    中文
    Language
@abberior.rocks
MENU Contact
RAYSHAPE – bye bye abarrations
Science beyond Barriers

abberior dyes & labels

Cell Biology

2023
bioRxiv

Improved rescue of immature oocytes obtained from conventional gonadotropin stimulation cycles via human induced pluripotent stem cell-derived ovarian support cell co-culture

Authors:

Alexa Giovannini, Sabrina Piechota, Maria Marchante, Kathryn S Potts, Graham Rockwell, Bruna Paulsen, Alexander D Noblett, Alexandra B Figueroa, Caroline Aschenberger, Dawn A Kelk, Marcy Forti, Shelby Marcinyshyn, Ferran Barrachina, Klaus Wiemer, Marta Sanchez, Pedro Belchin, Merrick Pierson Smela, Patrick R.J. Fortuna, Pranam Chatterjee, David H McCulloh, Daniel Ordonez-Perez, Joshua U Klein, Christian C Kramme

Keywords:

Pluripotent Stem Cells, Oocytes

Abstract:

Assisted reproductive technologies (ART) have significantly impacted fertility treatment worldwide through innovations such as in vitro fertilization (IVF) and in vitro maturation (IVM). Currently, traditional controlled ovarian hyperstimulation combined with IVF or intracytoplasmic sperm injection (ICSI) is considered the most efficacious form of ART and, therefore, it is used far more frequently than abbreviated ovarian stimulation combined with IVM and subsequent IVF/ICSI as a treatment for infertility or genetic problems. During this process, oocyte maturation happens in the patient’s ovary, driven by a lengthy stimulation protocol of gonadotropin injections. Despite that, a significant number of the oocytes retrieved during typical IVF cycles can be immature and are therefore excluded from further treatments. In vitro maturation and fertilization appear as a solution to improve the outcome of mature oocytes for patients, however this is not yet routinely used in the clinic due to suboptimal maturation rates despite being highly utilized in animal models. We recently reported the development of human ovarian support cells (OSCs) generated from human induced pluripotent stem cells (hiPSCs) and demonstrated their ability to recapitulate dynamic ovarian function in vitro. Here we investigate the utilization of these OSCs in an in vitro co-culture system to mimic the ovarian environment and promote IVM to rescue denuded immature oocytes derived from conventional gonadotropin stimulated cycles. We find that OSC-IVM significantly improves oocyte maturation rates compared to spontaneous maturation in media matched controls. Additionally, oocytes matured in OSC-IVM are transcriptionally more similar to conventional IVF MII oocytes than those that spontaneously matured in media controls. Together, these findings demonstrate the efficacy of a novel approach to improve the outcome of matured MII oocytes in modern ART practice by leveraging an optimized IVM system that better mimics the ovarian environment in vitro.

< Back to publications
Full article >
linkedin facebook twitter Instagram

World+49 551 9995 4010USA+1 301 661 0078

© 2023 abberior

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • INFINITY
  • FACILITY
  • STEDYCON

Superresolution & Confocal Modules

  • Overview
  • MATRIX Detector
  • TIMEBOW Imaging
  • FLEXPOSURE Illumination
  • RAYSHAPE Mirror
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Function
  • Dyes by Label
  • Microscopy Supplies

Applications

  • Overview
  • Live Cell Imaging
  • Cell Biology
  • Neurobiology
  • Virology
  • Microbiology
  • Zoology
  • Plant Sciences
  • Biophysics
  • Physiology
  • Membrane Biology
  • Material Science
  • All-purpose
  • Tailor-Made

Company

  • People
  • Founders
  • Mission
  • Career
  • Vacancies
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
abberior instruments GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
abberior GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
Abberior Instruments America LLC:
  • Privacy Policy
  • Terms of use USA
Cookie settings
  • contact
  • manuals
  • service
  • shop

Cookie settings

Please select whether this page may use cookies. Technically necessary cookies are always set. You can also find further information in our data protection statement.

These cookies are required to enable the basic functions of this website, we set a cookie accordingly. This saves your individual consent to the use of technically necessary cookies. Our website only uses technically necessary cookies.

These cookies allow us to analyze your site usage in order to evaluate and improve our services. They may also be used to provide you with a better customer experience on this site. With your consent, we set a corresponding cookie. This stores your individual consent to the use of functional cookies.


Privacy PolicyImprint