Products

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • MIRAVA POLYSCOPE
  • INFINITY
  • FACILITY
  • STEDYCON
  • Software Overview
  • LiGHTBOX
  • STEDYCON smart control
  • iMSPECTOR

Superresolution & Confocal Modules

  • Overview
  • MINFLUX Module
  • MATRIX Detector
  • TIMEBOW Imaging
  • FLEXPOSURE Illumination
  • RAYSHAPE Mirror
  • TRUESHARP Deconvolution
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Label
  • Mounting Medium
  • Cells and Nanoparticles

Applications

  • Overview
  • Biophysics
  • Cell Biology
  • Live Cell Imaging
  • Material Science
  • Membrane biology
  • Microbiology
  • Neurobiology
  • Physiology
  • Plant Science
  • Virology
  • Zoology

Company

  • People
  • Founders
  • Mission
  • Career
  • Vacancies
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
  • Support
  • Contact
  • Shop
  • Search
  • EN
    中文
    Language
@abberior.rocks
MENU Contact
MIRAVA POLYSCOPE – All in one and on for all: the perfect image
Science beyond Barriers

abberior instruments

Virology

2025
Journal of Advanced Research

Genome-wide CRISPR screen identifies STK11 as a critical regulator of sialic acid clusters important for influenza A virus attachment

Authors:

Huimin Sun, Jiahui Zou, Shaoyu Tu, Didan Luo, Rong Xiao, Yue Du, Chuhan Xiong, Shengsong Xie, Hailong Liu, Meilin Jin, Huanchun Chen, Hongbo Zhou

Keywords:

Swine influenza virusCRISPR screenSTK11AttachmentSialic acid cluster

Abstract:

Introduction:  Swine influenza virus (SIV) is a highly contagious respiratory pathogen in pigs that causes substantial economic losses in the pig industry. Importantly, pigs act as “mixing vessels” for diverse influenza A viruses (IAVs), facilitating the emergence of novel pandemic strains through reassortment, which represents a continuous global public health threat. IAV replication relies heavily on host cellular machinery, underscoring the importance of elucidating virus-host protein interactions for the development of targeted antiviral therapeutics.

Objectives: This study aims to identify host genes required for SIV replication via a genome-wide CRISPR screen and elucidate the mechanism by which STK11 modulates viral replication.

Methods: A pig genome-scale CRISPR knockout (PigGeCKO) screen was performed in newborn pig trachea (NPTr) cells to identify host genes required for SIV replication. Candidate genes were further validated by generating knockout cell lines using CRISPR/Cas9-mediated gene editing, followed by assessing their impact on IAV replication. The specific lifecycle stage regulated by STK11 and its mechanistic role in viral attachment were determined via Western blotting, confocal microscopy, transmission electron microscopy, and stimulated emission depletion (STED) imaging. In vivo validation of STK11 knockdown effects on IAV replication was conducted in BALB/c mice treated with STK11-targeting siRNA, with outcomes evaluated by survival analysis, body weight monitoring, lung viral titers quantification, immunofluorescence, and histopathology.

Results: STK11 promotes replication of different IAV subtypes in vitro, and STK11 knockdown significantly suppresses SIV replication in vivo. Mechanistically, STK11 depletion impairs viral attachment by altering the organization of sialic acid clusters, mediated through reduced intracellular actin stress fibers via inhibition of RhoA signaling pathway.

Conclusion: We identify STK11 as a novel regulator of IAV attachment and elucidate its mechanistic role in facilitating viral entry. These findings highlight the potential of STK11 to serve as an ideal antiviral target against IAV infection.

< Back to publications
Full article >
linkedin facebook bluesky twitter Instagram

World+49 551 9995 4010USA+1 301 661 0078

© 2025 abberior

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • MIRAVA POLYSCOPE
  • INFINITY
  • FACILITY
  • STEDYCON
  • Software Overview
  • LiGHTBOX
  • STEDYCON smart control
  • iMSPECTOR

Superresolution & Confocal Modules

  • Overview
  • MINFLUX Module
  • MATRIX Detector
  • TIMEBOW Imaging
  • FLEXPOSURE Illumination
  • RAYSHAPE Mirror
  • TRUESHARP Deconvolution
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Label
  • Mounting Medium
  • Cells and Nanoparticles

Applications

  • Overview
  • Biophysics
  • Cell Biology
  • Live Cell Imaging
  • Material Science
  • Membrane biology
  • Microbiology
  • Neurobiology
  • Physiology
  • Plant Science
  • Virology
  • Zoology

Company

  • People
  • Founders
  • Mission
  • Career
  • Vacancies
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
abberior instruments GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
abberior GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
Abberior Instruments America LLC:
  • Privacy Policy
  • Terms of use USA
  • contact
  • manuals
  • service
  • shop