Products

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • MIRAVA POLYSCOPE
  • INFINITY
  • FACILITY
  • STEDYCON
  • Software Overview
  • LiGHTBOX
  • STEDYCON smart control
  • iMSPECTOR

Superresolution & Confocal Modules

  • Overview
  • MINFLUX Module
  • MATRIX Detector
  • TIMEBOW Imaging
  • FLEXPOSURE Illumination
  • RAYSHAPE Mirror
  • TRUESHARP Deconvolution
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Label
  • Mounting Medium
  • Cells and Nanoparticles

Applications

  • Overview
  • Biophysics
  • Cell Biology
  • Live Cell Imaging
  • Material Science
  • Membrane biology
  • Microbiology
  • Neurobiology
  • Physiology
  • Plant Science
  • Virology
  • Zoology

Company

  • People
  • Founders
  • Mission
  • Career
  • Vacancies
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
  • Support
  • Contact
  • Shop
  • Search
  • EN
    中文
    Language
@abberior.rocks
MENU Contact
MIRAVA POLYSCOPE – All in one and on for all: the perfect image
Science beyond Barriers

abberior dyes & labels

Cell Biology, Neurobiology

2025
PLOS Biology

Mitochondrial ROS and HIF-1α signaling mediate synaptic plasticity in the critical period

Authors:

Daniel Sobrido-Cameán, Bramwell Coulson, Michael Miller, Matthew C. W. Oswald, Tom Pettini, David M. D. Bailey, Richard A. Baines, Matthias Landgraf

Keywords:

mitochondira; ROS; HIF-1α; synaptic plasticity; nervous system; Drosophila; reactive oxygen species; electron transport chain

Abstract:

As developing networks transition from spontaneous irregular to patterned activity, they undergo plastic tuning phases, termed “critical periods”; “critical” because disturbances during these phases can lead to lasting changes in network development and output. Critical periods are common to developing nervous systems, with analogous features shared from insects to mammals, yet the core signaling mechanisms that underlie cellular critical period plasticity have remained elusive. To identify these, we exploited the Drosophila larval locomotor network as an advantageous model system. It has a defined critical period and offers unparalleled access to identified network elements, including the neuromuscular junction as a model synapse. We find that manipulations of a single motoneuron or muscle cell during the critical period lead to predictable, and permanent, cell-specific changes. This demonstrates that critical period adjustments occur at a single-cell level. Mechanistically, we identified mitochondrial reactive oxygen species (ROS) as causative. Specifically, we show that ROS produced by Complex-I of the mitochondrial electron transport chain, generated by the reverse flow of electrons, is necessary and instructive for critical period-regulated plasticity. Downstream of ROS, we identified the Drosophila homologue of hypoxia-inducible factor (HIF-1α), as required for transducing the mitochondrial ROS signal to the nucleus. This signaling axis is also sufficient to cell autonomously specify changes in neuronal properties and animal behavior but, again, only when activated during the embryonic critical period. Thus, we have identified specific mitochondrial ROS and HIF-1α as primary signals that mediate critical period plasticity.

< Back to publications
Full article >
linkedin facebook bluesky twitter Instagram

World+49 551 9995 4010USA+1 301 661 0078

© 2025 abberior

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • MIRAVA POLYSCOPE
  • INFINITY
  • FACILITY
  • STEDYCON
  • Software Overview
  • LiGHTBOX
  • STEDYCON smart control
  • iMSPECTOR

Superresolution & Confocal Modules

  • Overview
  • MINFLUX Module
  • MATRIX Detector
  • TIMEBOW Imaging
  • FLEXPOSURE Illumination
  • RAYSHAPE Mirror
  • TRUESHARP Deconvolution
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Label
  • Mounting Medium
  • Cells and Nanoparticles

Applications

  • Overview
  • Biophysics
  • Cell Biology
  • Live Cell Imaging
  • Material Science
  • Membrane biology
  • Microbiology
  • Neurobiology
  • Physiology
  • Plant Science
  • Virology
  • Zoology

Company

  • People
  • Founders
  • Mission
  • Career
  • Vacancies
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
abberior instruments GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
abberior GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
Abberior Instruments America LLC:
  • Privacy Policy
  • Terms of use USA
  • contact
  • manuals
  • service
  • shop