Products

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • INFINITY
  • FACILITY
  • STEDYCON

Superresolution & Confocal Modules

  • Overview
  • MATRIX Detector
  • TIMEBOW Imaging
  • Adaptive Illumination
  • Adaptive Optics
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Function
  • Microscopy Supplies

Applications

  • Overview
  • Live Cell Imaging
  • Cell Biology
  • Neurobiology
  • Virology
  • Microbiology
  • Zoology
  • Plant Sciences
  • Biophysics
  • Physiology
  • Membrane Biology
  • Material Science
  • All-purpose
  • Tailor-Made

Company

  • People
  • Founders
  • Mission
  • Career
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
  • Support
  • Contact
  • Shop
  • Search
  • EN
    中文
    Language
@abberior.rocks
MENU Contact
ready to useReady to use MINFLUX 3D
Science beyond Barriers

abberior dyes & labels

Technology

2013
JOSA A

Analytical description of high-aperture STED resolution with 0–2π vortex phase modulation

Authors:

Xie, H., Liu, Y., Jin, D., Santangelo, P. J., & Xi, P.

Abstract:

Stimulated emission depletion (STED) can achieve optical superresolution, with the optical diffraction limit broken by the suppression on the periphery of the fluorescent focal spot. Previously, it is generally experimentally accepted that there exists an inverse square root relationship with the STED power and the resolution, but with arbitrary coefficients in expression. In this paper, we have removed the arbitrary coefficients by exploring the relationship between the STED power and the achievable resolution from vector optical theory for the widely used 0-2π vortex phase modulation. Electromagnetic fields of the focal region of a high numerical aperture objective are calculated and approximated into polynomials of radius in the focal plane, and analytical expression of resolution as a function of the STED intensity has been derived. As a result, the resolution can be estimated directly from the measurement of the saturation power of the dye and the STED power applied in the region of high STED power.

< Back to publications
Full article >
linkedin facebook twitter Instagram

World+49 551 9995 4010USA+1 301 661 0078

© 2023 abberior

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • INFINITY
  • FACILITY
  • STEDYCON

Superresolution & Confocal Modules

  • Overview
  • MATRIX Detector
  • TIMEBOW Imaging
  • Adaptive Illumination
  • Adaptive Optics
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Function
  • Microscopy Supplies

Applications

  • Overview
  • Live Cell Imaging
  • Cell Biology
  • Neurobiology
  • Virology
  • Microbiology
  • Zoology
  • Plant Sciences
  • Biophysics
  • Physiology
  • Membrane Biology
  • Material Science
  • All-purpose
  • Tailor-Made

Company

  • People
  • Founders
  • Mission
  • Career
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
abberior instruments GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
abberior GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
Abberior Instruments America LLC:
  • Privacy Policy
  • Terms of use USA
  • contact
  • manuals
  • service
  • shop

Cookie settings

Please select whether this page may use cookies. Technically necessary cookies are always set. You can also find further information in our data protection statement.

These cookies are required to enable the basic functions of this website, we set a cookie accordingly. This saves your individual consent to the use of technically necessary cookies. Our website only uses technically necessary cookies.


Privacy PolicyImprint