Products

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • INFINITY
  • FACILITY
  • STEDYCON

Superresolution & Confocal Modules

  • Overview
  • MATRIX Detector
  • TIMEBOW Imaging
  • Adaptive Illumination
  • Adaptive Optics
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Function
  • Microscopy Supplies

Applications

  • Overview
  • Live Cell Imaging
  • Cell Biology
  • Neurobiology
  • Virology
  • Microbiology
  • Zoology
  • Plant Sciences
  • Biophysics
  • Physiology
  • Membrane Biology
  • Material Science
  • All-purpose
  • Tailor-Made

Company

  • People
  • Founders
  • Mission
  • Career
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
  • Support
  • Contact
  • Shop
  • Search
  • EN
    中文
    Language
@abberior.rocks
MENU Contact
ready to useReady to use MINFLUX 3D
Science beyond Barriers

abberior instruments

Virology

2019
MBio

Analysis of CA content and CPSF6 dependence of early HIV-1 replication complexes in SupT1-R5 cells

Authors:

Zila, V., Müller, T. G., Laketa, V., Müller, B., & Kräusslich, H. G.

Keywords:

HIV-1

Abstract:

HIV-1 infects host cells by fusion at the plasma membrane, leading to cytoplasmic entry of the viral capsid encasing the genome and replication machinery. The capsid eventually needs to disassemble, but time and location of uncoating are not fully characterized and may vary depending on the host cell. To study the fate of the capsid by fluorescence and superresolution (STED) microscopy, we established an experimental system that allows discrimination of subviral structures in the cytosol from intact virions at the plasma membrane or in endosomes without genetic modification of the virus. Quantitative microscopy of infected SupT1-R5 cells revealed that the CA signal on cytosolic HIV-1 complexes corresponded to ∼50% of that found in virions at the cell surface, in agreement with dissociation of nonassembled CA molecules from entering capsids after membrane fusion. The relative amount of CA in postfusion complexes remained stable until they reached the nuclear pore complex, while subviral structures in the nucleus of infected cells lacked detectable CA. An HIV-1 variant defective in binding of the host protein cleavage and polyadenylation specificity factor 6 (CPSF6) exhibited accumulation of CA-positive subviral complexes close to the nuclear envelope without loss of infectivity; STED microscopy revealed direct association of these complexes with nuclear pores. These results support previous observations indicating capsid uncoating at the nuclear pore in infected T-cell lines. They suggest that largely intact HIV-1 capsids dock at the nuclear pore in infected SupT1-R5 cells, with CPSF6 being a facilitator of nucleoplasmic entry in this cell type, as has been observed for infected macrophages.

< Back to publications
Full article >
linkedin facebook twitter Instagram

World+49 551 9995 4010USA+1 301 661 0078

© 2023 abberior

Superresolution & Confocal Systems

  • Overview
  • MINFLUX
  • INFINITY
  • FACILITY
  • STEDYCON

Superresolution & Confocal Modules

  • Overview
  • MATRIX Detector
  • TIMEBOW Imaging
  • Adaptive Illumination
  • Adaptive Optics
  • EASY3D
  • RAINBOW Detection
  • STED Lasers
  • Autoalignment
  • Autofocus
  • Excitation Lasers
  • Accessories
  • Custom Solutions

Dyes & Labels

  • Overview
  • abberior STAR
  • abberior LIVE
  • abberior FLUX
  • abberior CAGE
  • abberior Supplies

Shop

  • Dyes by Product Name
  • Dyes by Technique
  • Dyes by Function
  • Microscopy Supplies

Applications

  • Overview
  • Live Cell Imaging
  • Cell Biology
  • Neurobiology
  • Virology
  • Microbiology
  • Zoology
  • Plant Sciences
  • Biophysics
  • Physiology
  • Membrane Biology
  • Material Science
  • All-purpose
  • Tailor-Made

Company

  • People
  • Founders
  • Mission
  • Career
  • Locations

News & Events

  • News
  • Events
  • Webinars
  • Past Events

Expertise

  • Knowledge Base
  • FAQ Videos
  • FAQ
  • Publications
  • White Papers
  • Sample Gallery
  • Microscopy Tutorials
  • Webinar Recordings
  • Protocols
abberior instruments GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
abberior GmbH:
  • Imprint
  • Privacy Policy
  • Terms of Sale
Abberior Instruments America LLC:
  • Privacy Policy
  • Terms of use USA
  • contact
  • manuals
  • service
  • shop

Cookie settings

Please select whether this page may use cookies. Technically necessary cookies are always set. You can also find further information in our data protection statement.

These cookies are required to enable the basic functions of this website, we set a cookie accordingly. This saves your individual consent to the use of technically necessary cookies. Our website only uses technically necessary cookies.


Privacy PolicyImprint